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ABSTRACT

Sparse coding has been extensively used in neuroscience to
model brain-like computation by drawing analogues between
neurons’ firing activity and the nonzero elements of sparse
vectors. Contemporary deep learning architectures have been
used to model neural activity, inspired by signal processing
algorithms; however sparse coding architectures are not able
to explain the higher-order categorization that has been em-
pirically observed at the neural level. In this work, we pro-
pose a novel model-based architecture, termed group-sparse
autoencoder, that produces sparse activity patterns in line with
neural modeling, but showcases a higher-level order in its ac-
tivation maps. We evaluate a dense model of our architec-
ture on MNIST and CIFAR-10 and show that it learns dic-
tionaries that resemble silhouettes of the given class, while
its activations have a significantly higher level order com-
pared to sparse architectures. Source code is available at:
https://github.com/manosth/silhouette-learning.

Index Terms— Unrolled optimization, group sparsity,
neural categorical representation, silhouette learning

1. INTRODUCTION

Neuroscientists have observed that human’s inferior temporal
(IT) cortex activity patterns tend to exhibit a higher level or-
der and there exists an inherently categorical representation
of objects [1, 2]. In particular, objects that belong in the
same conceptual class elicit similar neural responses; inter-
estingly, the categorical representation seems to be hierarchi-
cal and there is a conceptual ordering of the classes [2]. The
neural activities that generate the activity patterns are sparse
and sparse coding has been extensively used in neuroscience
[3] to model the firing activity of the neurons; however, the
computationally recovered activity patterns do not exhibit the
categorization that is empirically observed in human subjects.

Dictionary learning [4] has been extensively employed in
neuroscience in order to learn optimal atoms to model brain
activity. Computational advancements led to the use of deep
learning models and the recently developed model-based
learning approaches [5, 6] offer a theoretically motivated
approach to deep learning, tackling one of its fundamental

problems: current, high-performing architectures lack ex-
plainability. The model-based learning paradigm addresses
this by invoking domain knowledge in order to constrain
the neural architectures, thus making them amenable to in-
terpretation. Within this context, unrolled networks [7],
popularized by the seminal work of [8], unroll the steps of
iterative optimization algorithms to form a neural network.
LISTA [8], which enforces sparsity on the units of deep
layers, is based on the unfolding of the Iterative Shrinkage
Thresholding Algorithm (ISTA), a sparse coding optimiza-
tion algorithm. Sparsity-focused generative models [9] are
most frequently employed due to their experimentally and
theoretically proven generalization power [10, 11]. In ad-
dition, because they can significantly reduce the number of
nonzero coefficients—units active at a given layer—sparse
models have also been used to speed up inference in deep
neural networks [12, 13].

Recent research has deviated from the traditional sparse
coding model; certain works reconsidered the sparsity-
promoting minimization [14], where others focused on ex-
ploring different generative models [15, 16]. Within the latter
class, works studying group sparsity [17, 18] have been rather
prolific. In addition to minimizing the number of non-zero
coefficients, group sparsity forces them to occur in blocks.
Inputs that share similar activity patterns can be interpreted
as belonging to the same class or cluster. The groupings man-
ifest themselves either as a direct arrangement of the hidden
units of neural networks into blocks [19, 20], or as a cluster-
ing of data that, a priori, share similar characteristics, such as
patches of natural images [21]. Enforcing group structure has
proved practical in applications and outperforms approaches
based on the traditional notion of sparsity.

We propose a novel unrolled architecture based on group
sparsity in order to encode stimuli to neural representations
that maintain the performance of sparse coding models but
exhibit a higher-level categorization of neural activity that is
consistent with the empirical ordering that is observed in IT.
In Section 2 we introduce the group-sparse generative model
and group-sparse dictionary learning. Section 3 introduces
the unrolled architecture of group-sparse autoencoders and
experiments are presented in Section 4. Finally, we conclude
in Section 5.

https://github.com/manosth/silhouette-learning


2. GROUP-SPARSITY AND DICTIONARY
LEARNING

In model-based approaches the observed data {yi}Ni=1 ∈ Y1

are assumed to adhere to a generative model. Formally, we
assume that the data satisfy

yi = fθ∗(x∗i ), (1)

where x∗i ∈ X is a latent vector and fθ, parametrized by
θ, comes from a function class F that describes the relation
between the data yi and the latent variables x∗i . Most frequent
are models of linear relations, where the function fθ is of the
form fθ : x 7→ Ax, parametrized by θ = {A}. Note that
even when f is linear, the inverse problem of recovering x
from observations is generally not linear.

2.1. Group-sparse generative model

Consider a generative model where each observation2 y be-
longs to the union of one, or more, subspaces [22]. In this
general group-sparse model the observed data satisfy

y = A∗x∗ =
∑
g∈S

A∗gx
∗
g, (2)

where S ⊂ [Γ] denotes the group support (i.e. which of
the Γ groups are active), and the latent vector has the form
x∗ = [x∗1,x

∗
2, . . . ,x

∗
Γ]T . Gaussian mixture models, sparse

models, and nonnegative sparse models [23] can readily be
derived as special cases of the highly-expressive generative
model from (2). The group-sparse prior assumes that the
latent representation x is sparse, and that nonzero entries
occur in blocks (groups). The model also implies a decom-
position of A∗ into sub-matrices A∗1,A

∗
2, . . . ,A

∗
Γ such that

A∗ = [A∗1A
∗
2 . . .A

∗
Γ], where we assume that each group A∗g

has exactly d elements. Without additional structure, the gen-
erative model may not yield a unique solution; for example,
[18] impose orthonormality on A∗g to ensure uniqueness.

An analogue to the coherence of a dictionary in sparse
models (defined as µ = maxi 6=j |a∗Ti a∗j |; the inner-product
with the largest magnitude in A∗) is the block coherence of
A∗

µB = max
g 6=h

1

d
‖A∗Tg A∗h‖2. (3)

Intuitively, coherence metrics give a sense of how correlated
the different columns, or groups, of A∗ are and directly affect
the ability to recover latent vectors. Assuming normalized
groups, as we will in this work, it holds that 0 ≤ µB ≤ µ ≤ 1.

1We intentionally do not write {(xi,yi)}Ni=1, as the setting we are con-
sidering is strictly unsupervised.

2For the rest of the text, we drop the index i to reduce clutter.

2.2. Group-sparse dictionary learning

Assuming a linear underlying generative model, dictionary
learning sets out to learn a dictionary A such that every vec-
tor y in a data set adopts a sparse representation as a linear
combination of the columns of A using a vector x. In group-
sparse settings, given the dictionary A, group-sparse coding
lets us find x as the solution to the optimization problem

min
x∈X

‖x‖`0/`2 , s.t. y = Ax. (4)

The `0/`2 norm, expressed as the `0 “norm” of the vector of
`2 norms [‖x1‖2, ‖x2‖2, . . . , ‖xΓ‖2]T , minimizes the num-
ber of active groups. The combinatorial nature of `0 “norm”
makes this optimization intractable in practice. A popular ap-
proach utilizes the `1 norm instead, as a tractable convex re-
laxation of the optimization of (4), yielding

min
x∈X

‖x‖`1/`2 , s.t. y = Ax, (5)

where ‖x‖`1/`2 =
∑
g∈S‖xg‖2. Both the optimizations of

(4) and (5) require the recovery of latent codes x that lead to
an exact reconstruction of the data y. The following uncon-
strained optimization problem enables a trade-off between
exact recovery and the group-sparsity of the latent codes

min
x∈X

1

2
‖y −Ax‖22 + λ

∑
g∈S
‖xg‖2. (6)

Optimization objectives of the form 1
2‖y − Ax‖22 + λΩ(x)

have been studied extensively in the literature and can be di-
rectly solved via the theory of proximal operators. Pertinent
to the current discussion, the proximal operator promoting
group-sparse structures can be derived as

σλ(xg) =

(
1− λ

‖xg‖2

)
+

xg, (7)

where (·)+ = max(·, 0). Note that this proximal operator
bears a striking similarity to ReLU(x) = max(x, 0). Indeed,
we can consider (7) as a generalization of ReLU (informally
termed “Group ReLU”), where the thresholding is applied in
a structured way, instead of an element-wise fashion. Dictio-
nary learning can then be performed by solving

(Â, x̂) = arg min
A∈A,x∈X

1

2
‖y −Ax‖22 + λ

∑
g∈S
‖xg‖2, (8)

a nonconvex optimization problem. A popular approach,
termed alternating minimization [24], cycles between group-
sparse coding and dictionary update steps. Formally, the
group-sparse coding step considers the dictionary Â(t) fixed
and solves

x̂(t+1) = arg min
x∈X

1

2
‖y − Â(t)x‖22 + λ

∑
g∈S
‖xg‖2, (9)
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Fig. 1: The unfolded architecture of (11) for 3 layers.

followed by an optimization to find the optimal dictionary
Â(t+1) given an estimate of the latent code x̂(t+1)

Â(t+1) = arg min
A∈A

1

2
‖y −Ax̂(t+1)‖22, (10)

where (9) and (10) are performed in an alternating manner
until convergence, yielding (ÂT , x̂T ).

3. ARCHITECTURE

Unrolling the optimization of (8) results in the representation
at layer l + 1 to be given by

x(t+1) = σλ

(
x(t) +

1

L
AT (y −Ax(t))

)
, (11)

where (t) was dropped from A as we consider a tied archi-
tecture. Similar to the optimization algorithm, given enough
iterations (in our case, layers), the latent representation x(t)

will be a good approximation of the group-sparse codes. The
dictionary learning of the group dictionaries happens implic-
itly as we train the architecture via backpropagation.

4. EXPERIMENTS

In this section we experimentally evaluate the proposed archi-
tecture. We design experiments and evaluate the performance
of the group-sparse autoencoder versus sparse autoencoders
and showcase that the former is significantly more aligned
with empirical findings in neuroscience, exhibiting a categor-
ical organization in its latent space. In all our experiments, the
sparse autoencoder is trained using λ = 0.5 and the group-
sparse one using λ = 7.5.

4.1. Pairwise activations

Figure 2 shows pairwise distances between 100 MNIST test
images of each of the 10 digit classes with respect to the pixel
basis, the learned dictionary of using a sparse autoencoder,
and the learned dictionary using a group-sparse autoencoder.
We observe that the similarity matrix of the raw data (pixel ba-
sis), as well as the latent representation of the sparse autoen-
coder, do not exhibit any particular structure. This is expected
as a categorical organization is not enforced through the opti-
mization procedure in the case of the latter and not expected

in the case of the former. We report that the similarity struc-
ture of the group-sparse dictionary lends itself most readily to
standard similarity-based clustering algorithms and strongly
resembles the higher-level order and hierarchical categorical
representation that is empirically found in neural data [2]. In-
deed, we observe that the latent representations of samples
of the same class are similar to one another and dissimilar to
those of other classes.

4.2. Activity patterns

Figure 3 shows the class-specific mean activity maps of the la-
tent representations using the different architectures for both
MNIST and CIFAR10. The figure only compares one class
per dataset due to space constraints, but consistent results
are reported for every class. We observe that, as expected
by the group-sparse prior, the group-sparse autoencoder’s la-
tent representation exhibits significant structure at the class
level. This was already hinted by, and is consistent with, the
results of Figure 2. Each learned sub-dictionary of A tends
to be aligned with some of the classes and that is also re-
flected through their learned atoms. In stark contrast, the la-
tent representations of sparse autoencoders seem uniform and
this implies that classes do not have preferences for specific
neurons. Note that the non-sparse means we observe for the
sparse autoencoder are expected as different samples have no
optimizational incentive to use the same atoms in their re-
construction. The amount of sparsity for both architectures
can be tuned via λ in order to get sparser activations and was
chosen so that both models would have similar classification
performance.

4.3. Dictionary atoms

Finally, we present dictionaries learned with sparse and
group-sparse autoencoders in Figure 4 to highlight their
differences. For both datasets, we observe that sparse autoen-
coders learn local features that resemble strokes or edges.
This validates the findings of the previous subsections, as
these atoms have a universal flavor and are not particularly
aligned with a specific class. In contrast, the atoms learned
using the group-sparse architecture are distinctly aligned with
a specific class and are silhouettes, or averages, of the samples
of that class.
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(a) Similarity matrix of MNIST images when
representing the data using their raw format
(pixel basis).
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(b) Similarity matrix of MNIST images on
the latent representation learned by a sparse
autoencoder.
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(c) Similarity matrix of MNIST images on
the latent representation learned by a group-
sparse autoencoder

Fig. 2: Pairwise distances between the representations of MNIST test images for different latent representations.
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(a) MNIST, digit 7, sparse au-
toencoder.
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(b) MNIST, digit 7, group-
sparse autoencoder.
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(c) CIFAR-10, class “air-
planes”, sparse autoencoder.
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(d) CIFAR-10, class “air-
planes”, group-sparse autoen-
coder.

Fig. 3: Mean activity patterns of test samples for MNIST (top
row) and CIFAR10 (bottom row) using sparse versus group-
sparse autoencoders. One class per dataset shown due to
space constraints.

5. CONCLUSIONS

In this work we proposed a novel unrolled architecture that
produces activity maps that exhibit higher order. Motivated
by the misalignment of sparse coding with empirically ob-
served phenomena in neural data, we considered a group-
sparse prior. We developed an unrolled autoencoder for
group-sparse coding, showcased that it generates latent rep-
resentations that exhibit categorical organization, leads to
similarity maps that resemble those empirically observed in
neuroscience, and learns dictionary atoms that are character-
istic silhouettes of classes.

(a) MNIST, atoms, sparse au-
toencoder.

(b) MNIST, digit 0, 4, and 8,
group-sparse autoencoder.

(c) CIFAR10, atoms, sparse
autoencoder.

(d) CIFAR10, classes “car”,
“dog”, and “horse”, group-
sparse autoencoder.

Fig. 4: Dictionary atoms learns on MNIST (top row) and
CIFAR10 (bottom row) using sparse versus group-sparse au-
toencoders. For the group-sparse autoencoders each row cor-
responds to a different class.
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