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Abstract

Deep neural networks lack straightforward ways to incorporate domain knowledge and are
notoriously treated as black boxes. Prior works attempted to inject domain knowledge
into architectures implicitly through data augmentation. Building on recent advances on
equivariant neural networks, we propose networks that explicitly encode domain knowledge,
specifically equivariance with respect to rotations. By using unfolded architectures, a rich
framework that originated from sparse coding and has theoretical guarantees, we present
interpretable networks with sparse activations. The equivariant unfolded networks compete
favorably with baselines, with only a fraction of their parameters, as showcased on (rotated)
MNIST and CIFAR-10.
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1. Introduction

While advances in deep neural networks have yielded groundbreaking results in various fields
such as computer vision (Redmon and Farhadi, 2017; Pavlakos et al., 2017; Mildenhall
et al., 2020), natural language processing (Devlin et al., 2019; Brown et al., 2020), and
their intersection (Radford et al., 2021), interpreting their structure and explaining their
performance is not straightforward. At the same time, applying deep learning techniques
to novel fields comes with challenges, as it is not clear how to integrate domain knowledge
into existing architectures. In this work, we propose a novel architecture to address both
of these shortcomings at the same time.

Convolutional Neural Networks (CNNs) are equivariant in their representations with
respect to translation; however, there are other operators that is natural for image models

Figure 1: Filters learned at the final layer of R60-CNN, training on CIFAR-10.
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to be equivariant to, such as rotations. While data augmentation techniques have been used
to model equivariances they require large amounts of data and increase the computational
demands for training. At the same time, if we know the desired equivariances for a specific
application, investing computational resources to relearn these equivariances is wasteful.
This was also acknowledged by Dieleman et al. (2016) and Cohen and Welling (2016) who
concurently introduced CNN frameworks that incorporate rotated filters in order to create
equivariant representations with respect to rotations; however both works were limited to
elementary rotations. Follow up works by different authors extended the ideas to vector
fields (Marcos et al., 2017), applied rotations directly on the sphere to avoid interpolation
artifacts (Esteves et al., 2020), and incorporated harmonic functions to model arbitrary
rotations (Worrall et al., 2017).

There have been several attempts to tackle interpretability, ranging from prototype
learning approaches (Chen et al., 2019; Arik and Pfister, 2020) that learn prototypical parts
for each class, to post-hoc methods (Ribeiro et al., 2016) that analyze predictions from
arbitrary classifiers. In this work, we focus on model-based networks (Shlezinger et al., 2020):
in these approaches, interpretability is directly encoded into the model by constructing a
neural network to mimic the steps of an optimization algorithm. First introduced by Gregor
and LeCun (2010), unfolded neural networks have inspired a vast array of works, ranging
from theoretical contributions (Nguyen et al., 2019; Arora et al., 2015) to state-of-the-art
results (Tolooshams et al., 2020).

In this work, we propose an unfolded architecture, inspired from algorithms for sparse
coding, whose layer weights employ a cyclic group structure to achieve rotational equivari-
ance. Concretely, our contributions can be summarized as follows:

1. We propose an unfolded architecture, modeled after sparse coding, that is interpretable
and equivariant to rotations,

2. we showcase it’s efficacy in learning filters that are governed by a cyclic group struc-
ture, and

3. we evaluate the proposed architecture on MNIST, rotated MNIST, and CIFAR-10,
standard benchmarks for rotationally equivariant architectures and demonstrate its
performance.

2. Background

Equivariance. In lay terms, an operator is equivariant with respect to some actions if
it behaves in a predictable manner under them. Formally, we say that an operator f is
equivariant with respect to a family of actions T if, for any T ∈ T it holds that

f(T (x)) = T ′(f(x)), (1)

for some other transform T ′. Constant functions are trivially equivariant, and a special case,
invariance, arises when T ′ is the identity map. Note that convolution is not equivariant to
rotation (Cohen and Welling, 2016; Dieleman et al., 2016); instead, the two are related by

R(x) ∗ h = R(x ∗ (R−1(h)),

where x denotes an input image, R is a rotation, and h is the convolving filter.
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Cyclic groups. We call a finite group G a cyclic group if there exists a generating el-
ement g such that

G = {e, g, g2, . . . , gn−1}, (2)

where e denotes the identity element. We denote the family of cyclic groups as G; sev-
eral groups belong to this family, with most notable being D4, the symmetry group of the
square. Cyclic groups are of interest for our model since all elements can be identified by the
generator g. This will enable us, in Section 3 to significantly reduce the trainable parame-
ters of our networks, while retaining (and even improving) performance and interpretability.

Unfolded sparse autoencoders. In their most general form, unfolded networks tempo-
rally unroll the steps of optimization algorithms, mapping algorithm iterations to network
layers. Iterative Soft Thresholding (ISTA), an algorithm for sparse coding, has inspired
several architectures (Simon and Elad, 2019; Sulam et al., 2020; Tolooshams et al., 2021),
due to the desirability of sparse representations. Within that framework, the representation
at layer l + 1 is given by

z(l+1) = Sλ
(
z(l) +

1

L
W T

l (x−Wlz
(l))

)
, (3)

where x is the original input, z(l) is the representation at the previous layer, Wl are the
weights of layer l, L is a constant such that L ≥ σmax(W T

l Wl), and Sλ is the soft thresholding
operator. If W1 = . . . = WL, we call the network tied. As a final remark, Equation (3) can
be rewriten as
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which can be interpreted as a nonlinear residual network (He et al., 2016), with a residual
connection to the input.

3. Equivariant autoencoders

We will combine the ideas from Section 2 to create an equivariant unfolded architecture,
where the weights of each layer are cyclic rotations of one another. Let Rθ denote a rotation
by θ degrees. If 360 mod θ = 0 and we let k = 360÷ θ, then the group

G = {e,Rθ, . . . , Rk−1θ }, (5)

is a cyclic group generated by the generator g = Rθ. This construction allows us to extend
this framework, in future work, in order to learn the generator g, leading to data-driven
approaches for the cyclic group structure. Regardless, the weights of layer L satisfy

Wl =
[
wl Rθ(wl) . . . RK−1θ (wl),

]
(6)

where K is the number of filters per layer. The networks are constructed analogously to
Sulam et al. (2020); Tolooshams et al. (2021) but with one learnable filter per layer. During
training, the remaining filters are constructed and errors are backpropagated through all
filters. The experiments of Section 4 use untied networks for improved performance.
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4. Experiments

We used batch normalization (Ioffe and Szegedy, 2015) in all of our architectures, following
best practices. The normalization was applied at the output of every layer, except the last.
FISTA (Beck and Teboulle, 2009) is used for faster convergence of the sparse coding. All
of our networks use L = 4, λ (the parameter of Sλ) is set to 0.5, and the stepsize of FISTA
is set to α = 0.01. A summary of our main results is given in Table 1.

We test three models: a baseline unfolded sparse network; R90-CNN, an equivariant
unfolded network with the elementary rotations; and R60-CNN, with 60° rotations. A
visualization of R60-CNN’s learned filters when trained on CIFAR-10 is show in Figure 1.

MNIST. We find that all models performed similarly on MNIST. However, note that
R90-CNN has only 1

4× the parameters of the baseline; R60-CNNH has only 1
6 .

Table 2: Trained on MNIST.

Method MNIST rot-MNIST

Baseline 97.75 36.89

R90-NN 98.04 37.02
R60-NN 97.73 37.4

When evaluating the architectures on the rotated
MNIST, a harder dataset, we observe that the R90-
CNN, with a fraction of the parameters of the baseline
model leads to the best performance. This showcases
that the encoded equivariance in the representation is
actually beneficial for the classification of the inputs.

To further demonstrate the benefit of the equiv-
ariant unfolded networks, we trained dense variants of the three models on MNIST, and
evaluate their performance on the rotated dataset. This experiment showcases the gen-
eralization capabilities of the equivariant networks. While we see similar performance on
the trained dataset, we see that both the equivariant models are able to generalize better
than the baseline. Dense architectures were chosen for this experiment to highlight the
distribution shift when evaluating on rot-MNIST.

CIFAR-10. When training on an even harder dataset, we found that both the equivari-
ant models outperform the baseline, with only a fraction of the parameters. Moreover, the
filters of R90-CNN and R60-CNN, by construction, exhibit a topographic structure, that is
not present in the filters of the baseline model (the filters can be found in Appendix A).

5. Conclusions and future work

We introduced equivariant unfolded networks, where the filters of each layer are discrete
rotations of one another. By exploiting this cyclical structure, we facilitate training without
increasing the parameters of the model. Our experimental results tested these networks
against a baseline unfolded network and showed favorable results, with only a fraction of
the learnable parameters. Finally, we consider learning the generator g from data, as hinted
in Section 2, an exciting avenue for future work.

Method MNIST rot-MNIST CIFAR-10

Baseline 99.21 85.48 71.87

R90-CNN 99.12 86.62 72.20
R60-CNN 98.77 80.07 73.14

Table 1: Performances of the baseline model, R90-CNN, and R60-CNN on different datasets.
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Appendix A. Learned filters on CIFAR-10

We present filters learned on CIFAR-10 (without whitening) by the three architectures.
We choose to present filters from the first layer, as those resemble edge detectors the most
and thus are more interpretable. While all models seem to be learning similar filters, the

Figure 2: Filters learned using the baseline architecture.

Figure 3: Filters learned using R90-CNN.

equivariant models do not need to “waste” computation on learning different orientations.
Indeed, if we look at Figure 2, the first filter from the top and the third from the bottom
of the first column seem to be rotated versions of one another. In stark contrast, the third
column of Figure 3 seems to learning the elementary rotations of that same filter, without
investing resources on learning that information from the data. That is also observed in the
first column of Figure 4, which has even more rotated versions of that same filter.
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Figure 4: Filters learned using R60-CNN.
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