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Abstract—Decoding problems have always been extremely
important in telecommunications and speech recognition. As data
becomes more abundant, efficient and robust pruning variants of
classic decoding algorithms become necessary in order to achieve
real time decoding. However, fixed beam decoding algorithms fail
to achieve both efficiency and robustness and have to sacrifice
one in favor of the other. In this work we propose a new adaptive
pruning algorithm inspired by the tropical geometrical analysis
of the traditional Viterbi pruning algorithm to solve decoding
problems. In particular, the proposed algorithm tries to adapt
the beam width based on the internal volume and the entropy,
indicating the relative change, of the solution space. We illustrate
the robustness and efficiency of our algorithm over other adaptive
algorithms in the literature through experimental validation.

Index Terms—Adaptive pruning, Viterbi algorithm, tropical
geometry

I. INTRODUCTION

Pruning algorithms are ubiquitous in computer science
and are applied in a vast array of problems, with notable
applications in speech recognition and convolutional code
decoding. Such algorithms are used in order to emphasize
the speed of computation over the optimality of the solution.
This is essential in applications where real time computation
requirements are indispensable (as is the real time decoding
of incoming codes). Several authors have proposed adaptive
algorithms with varying motivations: some algorithms try to
minimize the power consumption of the pruning procedure
[16, 8, 9], while others aim to employ ideas from theoretical
computer science to improve the accuracy of the algorithm [2,
10]. Some authors even use techniques from control theory to
adaptively alter the pruning parameter [18].

Adaptive algorithms are a prime candidate for analysis
using tropical geometry [11], which has been increasing in
popularity. Many authors [17, 4] resort to using tropical
geometry for its appealing properties; namely the piecewise
linearity of the solution space, and the intuitive reasoning
regarding that space. Tropical geometry allows for a layer of
abstraction; instead of reasoning about the algorithm itself, we
can reason about the solution space it produces, which often
can lead to deductions about the possible solutions. This can
be extremely useful in modern day, since the sheer size and
dimensionality of the input data can make explicit remarks
about the function of algorithms near impossible.

To the authors’ best knowledge, this is the first work the
utilizes the properties of tropical geometry in the design of an
adaptive algorithm. Other authors have proposed (numerical)
optimizations which can reduce the energy consumption of
convolutional code decoding, and others have analyzed the
structure of specific models in order to make deductions and
predictions about the pruning parameter. In contrast, in this
paper we try to adapt the pruning parameter based solely on
the shape and state of the solution space, without assuming
any specific structure of the applied model.

References [16, 8, 9] tackle pruning from a telecommunica-
tions’ perspective, aiming to minimize the energy consumption
during decoding in receivers. The authors of [18] aim to utilize
metrics, derived from an assumed system structure, to predict
the evolution of the leniency parameter. Reference [2] tries to
exploit the inherent nature of speech recognition in order to
speed up pruning. Finally, in [10] the authors try to efficiently
understand the structure of the solution space by computing
cliques in order to, subsequently, improve pruning. However,
that approach is supervised; each specific application domain
has to be analyzed and evaluated whether cliques can be
computed, and thus the approach is not generalizable.

In this work we propose an adaptive variation of the Viterbi
pruning that adapts the pruning parameter by exploiting the
geometrical structure of the solution space. In particular,
tropical polytopes can be defined during each step of the
Viterbi algorithm. We utilize two metrics (defined in our
previous work [17]) deriving from the tropical polytopes of the
Viterbi pruning in order to design the new adaptive algorithm.
The proposed algorithm computes the metrics’ values at each
time frame and then compares them with a previous history
in order to decide whether to adapt the current value of
the pruning parameter. In the case that pruning is indeed
warranted, the algorithm tries to adapt the parameter to the
effect of maintaining the volume enclosed in the solution
space.

In Section II we introduce the background upon which this
work is based. Section III presents the proposed adaptive algo-
rithm and briefly analyzes its function. Finally, in Section IV
we perform experiments by applying the proposed algorithm
to a simulated attack on a network.



II. BACKGROUND

A. Tropical Algebra and Geometry

Tropical algebra [7, 3, 6] is an algebraic body similar to
linear algebra, where the pair of main operations is (∧,+).
It operates on the extended real multidimensional space Rnmin

(Rmin = R ∪ {+∞}). The min-plus matrix multiplication is
denoted �, and its result between two matrices A,B ∈ Rnmin

is given by:

(A�B)ij =

n∧
k=1

Aik +Bkj (1)

where ∧ denotes the minimum (see [12] for details).
Tropical geometry [11] studies the objects of Euclidean

geometry under the tropical prism. Similar to its Euclidean
counterpart, a tropical polytope will be a closed intersection
of a finite number of tropical halfspaces. Figure 1 offers visual
examples of tropical halfspaces and polytopes.
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Fig. 1: (a) The tropical line min(x+ 1, 2) separates the space
into two regions. (b) Three tropical halfspaces define a tropical
polytope, Rp.

B. Tropical Viterbi

The Viterbi algorithm can be written in tropical algebra, as
we proposed in [17], in the following closed form:

x(t) = P(σt) �AT � x(t− 1) (2)

where x(t) is the state vector, A is the matrix of the transi-
tion weights, and P(σt) is a diagonal matrix containing the
observation weights for the input symbol σt at each state.

In [17] we analyze the pruning variant of the Viterbi
algorithm in tropical algebra and comment on its geometry.
Consider variables z1, . . . , zn, where n is the dimensionality
of x(t). Each zi expresses the range of the values for xi(t) that
are between the Viterbi update law and the leniency threshold.
Note that a particular zi might not admit any values, if the
Viterbi update for the corresponding xi(t) is greater than the
leniency threshold. Formally, let z be a variable vector. That
vector can be bounded by the Viterbi update law of (2) and
the pruning vector ηηη = θ + 1

2

(
x(t)T � x(t)

)
+ 0, where θ is

the leniency parameter. This defines a tropical polytope on the
variable vector z, which encloses all the possible assignments
of the variables that satisfy the constraints (which, essentially,
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Fig. 2: The proposed algorithm calculates a new value θi for
the leniency parameter θ of each time frame. Based on the
entropy and the volume of the solution space at that time
frame, the value θi is adapted to allow for the survival of
more, or fewer, paths.

is the solution space for the pruning procedure). Then, at every
iteration of the algorithm, two metrics are calculated based on
that polytope:

• a metric based on the normalized volume inside the
polytope:

ν = − 1

|supp(z)|
∑

i∈supp(z)

log ri
log (max r)

(3)

• a metric based on the entropy of the polytope:

ε = − 1

|supp(z)|
∑

i∈supp(z)

−zi(t) · e−zi(t) (4)

where ri = η− zi. Essentially, ri is the degree to which each
dimension satisfies the Viterbi constraints.

C. Poisson distributions

It is very common for network requests in telecommuni-
cation applications to be modeled as Poisson distributions [1,
13]. Poisson distributions are controlled by the parameter λ,
which can be interpreted as the mean amount of requests in a
time frame. Alternatively, in queuing systems the λ parameter
can be perceived as the average time units that a user will
have to wait until he is serviced. Formally, the probability of
witnessing exactly κ requests in the time frame (or waiting
for κ time units) is given by:

P [X = κ] = e−λ
λκ

κ!
(5)

where X is the random variable modeling the number of
requests in the time frame.



Algorithm 1 AdaptivePruning(data, I , A, α, β, τ , θ0)
1: t← 0
2: E,N,L← ∅
3: θ ← θ0
4: while t < T do
5: ε, ν ← polytope(n, I, A,Λ, θ)
6: if t ≥ τ then
7: if |ε−mean(E)|

mean(E) ≥ α then
8: if ν ≤ mean(N) then
9: θ ← (1 + β)× θ

10: else
11: θ ← (1− β)× θ
12: end if
13: end if
14: end if
15: update(E,N,L)
16: end while
17: seq← backtrack(L)
18: return seq, L

III. ALGORITHM

We propose a novel adaptive pruning algorithm that dynam-
ically adapts the pruning parameter by consulting the metrics
ν and ε of Eq. (3) and (4). The algorithm computes the metrics
and then decides, based on a history of values, if the current
iteration warrants an adaptation of the pruning parameter θ.
In such a case, the θ parameter is increased or decreased
accordingly, in order to maintain the volume enclosed in the
polytope. In essence, the algorithm computes a new value θi
for each time frame, based on the state of the solution space
(Fig. 2). The main parameters of the algorithm are:

i. the parameter α, which is the percentage threshold for ε. If
the current ε differs from the running history by a percentage
more than α, then the algorithm will adapt the parameter θ.

ii. the parameter β, which is the percentage change for θ. If
the algorithm proceeds to the adaptation of θ, the current value
of ν is compared with the running history. If larger, then this
means that the current θ allows for the inclusion of more paths
than before, and thus the algorithm proceeds to decrease θ by
a percentage of β. Similarly, if ν is smaller than the running
history, the algorithm increases θ by a percentage of β, in
order to allow for the survival of more paths.

iii. the parameter τ , which is the length of the running
history. The algorithm first collects τ samples for the running
history, and then compares the current interval’s metrics with
the average of the most recent τ entries in order to decide if
an adaptation is warranted, and also whether to increase or
decrease the parameter θ.

iv. the parameter θ0, which is the initial value of the pruning
parameter. θ0 is used as the pruning parameter for the first τ
iterations, in order to calculate the history of metrics ε and ν.

Algorithm 1 presents the proposed algorithm. Besides the
parameters mentioned above, the algorithm also accepts other

θi−1 θi

θi+1

Fig. 3: Bounding the solution space of variable vector z by
the Viterbi update law and the pruning vector ηηη of Eq. (2)
defines a tropical polytope. The adaptive algorithm exploits the
properties of the polytope to adapt the value of the leniency
parameter θ.

inputs required for the simulation and the Viterbi computation.
In particular the initial, and transition costs I,A are required.

In essence, the algorithm operates as follows. First, the
Viterbi computation is performed using the previous value
for the parameter θ. Then, the geometrical metrics ε and
ν are calculated from the polytope of the Viterbi compu-
tation. Then, the algorithm compares the current value of
the metric ε with the running history. This is done because
ε, essentially, calculates the entropy of the solution space.
In information theory [14, 5, 15], entropy is a measure of
surprise. In particular entropy is used to communicate if a
new sample conveys a significant amount of information.
For example, if a sample abides by the expectations of the
current parametrization of the distribution, then the entropy
will be low, indicating that the sample provides no new
information regarding the understanding of the distribution
(and thus we are not surprised to observe this sample when
we are sampling our distribution). Conversely, if a sample is
atypical for the current parametrization, then the entropy will
be high, indicating that the sample provides new information
regarding our understanding of the distribution, suggesting that
the parametrization might be wrong. The algorithm tries to
leverage this measure of surprise, by comparing the level of
current entropy with a running history. If there is a significant
difference, this indicates a change in the solution space; the
previous parametrization of θ will no longer have similar
effects. Thus, in such cases, the algorithm decides to update
the value of θ in order to curb the levels of excitement.

When the algorithm decides there exists a need for adap-
tation, the metric ν is compared to its running history. This
is done because, as already mentioned, ν is a measure of the
volume of the solution space. Volume can convey quantitative
information about the solution space. By maintaining that
volume, we ensure that the solution space has some metric
similarity throughout iterations. The normalized volume is



useful since the values that the state vector admits change
over time. As the total costs get larger (or the probabilities get
smaller), then the leniency parameter θ has less of an effect. By
trying to maintain the normalized volume, we ensure that the
leniency parameter θ will adapt to accommodate larger weights
in the later iterations of the Viterbi pruning. The algorithm
tries to leverage these observations by keeping a history of the
metric ν. In cases where pruning is warranted (as indicated by
the percentage change in ε), an effort is made to maintain the
normalized volume metric ν, in order to keep the size of the
solution space similar. Figure 3 further illustrates this process.

IV. EXPERIMENTAL RESULTS

We performed experiments to evaluate Algorithm 1 using
a simulated attack on a network. In particular, we assumed
that a malevolent user has gained unauthorized access to the
network and wishes to disrupt its function by performing a
large number of requests, thus hogging the available resources,
hindering the service of benevolent users. We would like to
utilize Algorithm 1 in order to solve the attacker localization
problem and thus determine that malevolent user. We also
assume that user exhibits some intelligence, by varying the rate
according to which he sends packets to the network at timed
intervals. Thus, our adaptive algorithm will try to dynamically
adapt the value of the pruning parameter θ across the iterations,
in order to locate the attacker without wasting the system’s
resources (namely, without examining a large number of
states). The number of requests for both the attacker and the
benevolent users are modeled with Poisson distributions of
varying parameters, as discussed in Section II.

We compare Algorithm 1 (polytope) with three other
decoding algorithms:

a. non-adaptive Viterbi pruning (constant) with a good
choice for the leniency parameter, which we use as a baseline.

b. a variation of the average algorithm (average) from
[10] where we introduced a multiplicative constant to further
limit the number of states. The actual proposed algorithm of
[10] is not examined as it performed poorly compared to the
other algorithms examined.

c. the control-based algorithm (control) from [18]. Note
that we did not use the variant with the adaptive estimation for
the number of steps (referred therein as the two-step control
system) because it requires significant preprocessing, which
introduces an unfair comparison with other algorithms that do
not entail a learning component.
The parameters for the algorithms (a-c) were chosen such that
all algorithms achieve the exact same accuracy.

In the modeling for the experiments, we assigned a lower
Poisson parameter to the attacker. This choice was made
because the original framework that was proposed for the
metrics ε and ν was modeled in min-plus algebra, and thus the
Viterbi algorithm aims to find the sequence of the lowest cost.
In that vein, we decided to keep the modeling the same, to
highlight the mathematical origin of the algorithm. At the same
time, we wanted the experiment to maintain its immediately
interpretable nature, meaning that the parameter of the Poisson

distributions reflects the average number of requests by each
user. Thus, we allowed a lower Poisson parameter to the
attacker, and perform min-plus calculations.
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Fig. 4: Computation time in seconds versus the number of
users in the network.

We performed two experiments: one where we set the
parameter λ of the attacker equal to half of the benign users’
and varied the number of total users in the network, and one
where the number of users was constant and equal to 100,
and we varied the parameter of the attacker. All results were
averaged over three runs to ensure stability.
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Fig. 5: Number of survivors versus the number of users in the
network.

Regarding the parameters of the algorithms, our proposed
algorithm has three input parameters; the percentage change
in the enclosed volume α, the learning rate β, and the initial
guess for the leniency θ0, which is required for all the
examined algorithms. The parameter of the percentage change
was set to 0.25 the learning rate was set to 0.01 across all
experiments, with the algorithm performing consistently great.
However, that is not the case for the other algorithms. The
“average” algorithm requires a considerate experimentation
with the multiplicative factor of the leniency, which greatly



affects how the algorithm performs. The control based method,
even though it can somewhat adapt, it still heavily relies on
setting a number of states, or doing significant preprocessing
to run. Finally, the constant leniency requires to pinpoint the
best leniency (which is problematic).

As can be seen in Fig. 4, all algorithms perform similarly in
the time domain. However, as Fig. 5 highlights, our proposed
algorithm consistently examines fewer states, which measures
the algorithm complexity. In the case of 300 users, all algo-
rithms examine a higher number of states, except the control-
based algorithm, whose parameter on the number of surviving
states prevents it from adapting. Our proposed algorithm’s
robustness can also be highlighted in Fig. 6, where, when the
difference between the attacker and the users is minuscule,
a great number of states is examined due to uncertainty.
However, it is evident that other, namely the variation of
the average and the control-based algorithms, fail to adapt
to this uncertainty, which has a high probability of pruning
the best path. Conversely, when the distinction between the
attacker and the users is clear from the data, our algorithm
only expands a single state, where others waste resources due
to their inability to adapt.
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Fig. 6: Number of survivors versus the difference in packet
rate λ.

V. CONCLUSION

In this work we proposed a robust variation of the Viterbi.
In particular, we proposed an adaptive pruning algorithm
inspired by the geometrical aspect of the tropical analysis
of the Viterbi pruning. By analyzing the tropical geometry
of the traditional pruning algorithm, we incorporate metrics
into the proposed adaptive algorithm in order to evaluate the
need for adaptation. In the case the algorithm deemed that
the current iteration’s metrics vary sufficiently from a previous
history, then an adaptation is made to the effect of maintaining
the previous levels of the enclosed volume. We experimented
with various values for the parameters of the algorithm and
presented numerical results of the application of the proposed
algorithm in the task of locating a simulated attacker on a
network.
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