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Abstract—The Viterbi algorithm and its pruning variant, are
some of the most frequently used algorithms in communications
and speech recognition. There has been extended research on
improving the algorithms’ computational complexity, however
work trying to interpret their nonlinear structure and geometry
has been limited. In this work we analyse the Viterbi algorithm
in the field of tropical (min-plus) algebra, and we utilize its
pruning variant in order to define a polytope. Then, we interpret
certain faces of the polytope as the most probable states of the
algorithm. This also provides a useful geometrical interpretation
of the Viterbi algorithm.

Index Terms—Min-plus algebra, Viterbi, algorithm optimisa-
tion, geometry.

I. INTRODUCTION

The field of optimisation tries to find optimal points in
functions, minimize costs, and find optimal paths in graphs.
A common application of the latter can be found on Weighted
Finite State Transducers (WFSTs), which are mathematical
structures that extend the traditional automata to support
outputs and weights. WFSTs have found great use in Auto-
matic Speech Recognition (ASR) ([1], [2], [3]) and Natural
Language Processing (NLP) ([3]). An example of a WFST is
given in Fig. 1. The Viterbi algorithm ([4], [5], [6]) has been
instrumental in the field of digital communications and speech
recognition, and its pruning variant is necessary in order to
have a feasible computational complexity. Several authors have
researched their computational complexity ([6], [7], [8], [9]),
and many have tried to introduce new architectures, or provide
optimisations in certain settings ([10], [11], [12], [13]). The
authors of [14] first noted the tropical structure of WFSTs,
and developed a multitude of algorithms for them ([15], [5]).

However, to the authors’ best knowledge, no extensive work
has been done on the geometric interpretation of the algorithm.
While numerical optimisations have been studied extensively,
its geometry hasn’t been thoroughly explored. In this paper
we examine its properties from a theoretical standpoint and
try to deduct a geometric structure, in addition to advancing
its algebraic understanding using tropical analysis.

Reference [6] offers various ways researchers have tried to
reduce the complexity of decoding. These vary from opera-
tions unrelated to the algorithm itself (such as minimization
and weight pushing on the WFST), to alternations in the
algorithm (such as pruning and rescoring). In [8] the authors
propose using a precompiled automaton to efficiently compute
surviving states, and thus speed up the decoding process.
In [9] authors utilize Viterbi, alongside heuristics, to solve
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Figure 1: A simple Weighted Finite State Transducer. The
initial state is denoted with an arrow with the label start, and
accepting states are marked with a double circle. The transition
labels are of the form “input label:output label/weight”. The
weights on the edges are negative logarithms of probabilities.

efficiently the problem of computing graph trajectories. In [7]
the authors unveil a connection between decoding and the
maximum clique algorithm. Regarding new architectures, [11]
and [10] introduce more sizeable architectures that allow us
to decode strings faster. In [12] the authors take advantage
of recent advances in GPU processing to significantly speed
up algorithms on WFSTs. Reference [13] is the result of a
hackathon, which utilizes heuristics and optimisations in order
to speed up decoding. Pachter and Strumfels ([16]) studied as-
pects of the geometry of the sum-product algorithm in HMMs.
In [17] the author proposes that all Viterbi sequences have
a part with a periodic structure, and divides Markov chains
in “regions” of similar Viterbi paths, which he interprets as
vertices of a Newton polytope. Finally, [18] is an effort to use
tropical geometry in neural networks (max-plus perceptron).

In this paper, we analyse the tropical structure of the
algorithm. First we model it and its pruning variant in tropical
algebra, which is a min-plus algebra ([19]). Then, we analyse
its geometry. We consider a relaxation of the update law
that allows us to define a polytope, enabling the geometrical
interpretation of the problem. We relate the vertices and the
faces of the polytope with the N -best paths and the pruned
vector of the algorithm. Finally, we present a numerical
example to highlight the geometrical structure. This provides
a useful geometrical interpretation of the Viterbi algorithm.

In Section II we present the required background and define
the notation that we will use throughout this paper. Section III



models the Viterbi algorithm and its pruning variant in tropical
algebra, and then considers a relaxation in order to define a
polytope. In Section IV we suggest that the space enclosed
in the polytope can be indicative of the effectiveness of the
pruning procedure, and we present a connection between the
faces and the vertices of the polytope with the N -best paths.
Section V contains the numerical example and visualizations.

II. BACKGROUND & NOTATION

A. Notation

We use R to refer to the line of real numbers (−∞,+∞),
and let Rmin = R ∪ {+∞}. We denote:

• scalars with lowercase symbols.
• column vectors with lowercase boldfaced symbols.
• matrices with uppercase boldfaced symbols.

When referring to elements of matrices or vectors we use the
non-boldfaced symbol with the corresponding subscript.

B. Tropical Algebra

Min-plus (tropical) algebra ([20], [21], [22], [19]) is an
algebraic body similar to linear algebra in which the pair
of operations (+,×) is replaced by the pair (min,+) of
a generalized “addition” and a generalized “multiplication”,
corresponding to the minimum and the standard addition.
We use ∧ to denote the minimum. For matrix and vector
“multiplication” we use the notation proposed in [23]. In
particular, we use � to denote the min-plus multiplication
between vectors/matrices. Formally, let A ∈ Rm×nmin and
B ∈ Rn×rmin . Then:

(A�B)ij =

n∧
k=1

Aik +Bkj

(In [23] the author uses � to denote the max-plus multipli-
cation, and reserves �′ for the min-plus multiplaction. Since
our main focus is tropical algebra, we reverse the notation.)

The neutral elements for each of the operations are:

• +∞ for the the generalized “addition”.
• 0 for the generalized “multiplication”.

We present some example calculations for illustration:

• [
3

7

]
∧
[
9

2

]
=

[
min(3, 9)

min(7, 2)

]
=

[
3

2

]
is an example of a generalized vector “addition”.

• [
2 4

−6 11

]
�

[
7

3

]
=

[
min(2 + 7, 4 + 3)

min(−6 + 7, 11 + 3)

]
=

[
7

1

]
is an example of a generalized “multiplication” between
a matrix and a vector.

We denote the n× n identity matrix as In, whose entries are
+∞, except the elements in the diagonal, which are 0.

C. Geometry and Polytopes

Tropical geometry ([21]) applies the ideas of polyhedra and
polytopes ([24], [25]) in the tropical setting. Polyhedra are
fundamental objects in geometry, defined by halfspaces.

Definition 1. Let a,b ∈ Rn+1
min . An affine tropical halfspace is

a subset Rnmin defined by:

T (a,b) := {x ∈ Rnmin :

(
n∧
i=1

ai + xi

)
∧ an+1 ≥(

n∧
i=1

bi + xi

)
∧ bn+1}

Having defined halfspaces, we can now define polyhedra.

Definition 2. The intersection of a finite number of affine
tropical halfspaces is called a tropical polyhedron.

Polytopes are polyhedra that are bounded.

Definition 3. If a tropical polyhedron is bounded, then it is a
tropical polytope.

III. TROPICAL VITERBI

A. Analysis

In this section we will examine how Viterbi pruning can be
written compactly in min-plus algebra. The Viterbi algorithm
can be written as:

qi(t) =

(
max
j
wjiqj(t− 1)

)
· bi(σt) (1)

where wji is the transition probability from state j to state i,
bi(σt) is the probability of observing the input symbol σt (at
the time frame t), while on state i, and qi(t) is the best score
(highest probability) along a single path which, optimized over
the previous t − 1 time frames, ends in state i at time frame
t and accounts for the observed symbols σ1, ..., σt. By taking
the negative logarithm of the above, we get:

− log qi(t) =

(
min
j

(− logwjiqj(t− 1))

)
− log bi(σt) (2)

Now, setting x(t) = − logq(t), A = − logW, and p(σt) =
− logb(σt) we can write this in matrix notation:

x(t) = AT � x(t− 1) + p(σt) (3)

In order to be strict about using only min-plus notation, we
can define the matrix P(σt) as follows:

P(σt) =

p1(σt) · · · ∞
...

. . .
...

∞ · · · pn(σt)

 (4)

Then (3) can be written compactly:

x(t) = P(σt)�AT � x(t− 1) (5)

In the pruning version of the algorithm, we go through each
vector x(t) and we set values that are greater than a threshold



to +∞. We claim that the indices that should be pruned are
indicated by the Cuninghame-Green inverse ([19], [23]).

Proposition 1. Let

X(t) =


x1(t) ∞ · · · ∞
∞ x2(t) · · · ∞
...

...
. . .

...
∞ ∞ · · · xn(t)


where xi(t) represents the i-th element of the vector x(t),
and let ηηη = η + 1

2

(
x(t)T � x(t)

)
+ 0, where 0 is a vector

that comprises of 0 and η is the leniency variable. Finally, let
�′ denote the max-plus matrix multiplication and X#(t) :=
−XT (t). Then the negative elements of

y = X#(t)�′ ηηη (6)

indicate which indices of x(t) need to be pruned.

Proof. The Cuninghame-Green inverse y provides the small-
est feasible solution to the inequality X(t) � y ≥ ηηη. Since
X(t) is diagonal, then each element yi corresponds to xi(t).
The sum of each yi and xi(t) needs to be bigger than the
threshold values. However, y is the smallest solution, and thus
if xi(t) is already greater than the threshold, then yi will admit
a negative value, indicating that xi(t) should be pruned.

An example is given below. Let

x =
[
1 7 4

]T
and suppose that the leniency is η = 5. Then, ηηη = 5 +
1
2 (2×min(1, 7, 4))+ 0 =

[
6 6 6

]T
. The optimal solution

then is given by (6):

y =

 −1 −∞ −∞
−∞ −7 −∞
−∞ −∞ −4

�′

66
6

 =

 5

−1
2


As y2 is negative, it gets pruned, and the resulting vector is:

xpruned =
[
1 ∞ 4

]T
B. Geometry

1) Viterbi equations: We will extract some geometric struc-
ture from the Viterbi equations. Let z be a vector of variables.
We will bound the possible values of z using the update law
of (5). Consider the relaxation:

z ≥ b, b = P(σt)�AT � x(t− 1) (7)

By letting G = In, (7) can be written in the form:

G� z ≥ b (8)

The reason why we choose the relaxation of ≥ over ≤ is
because of its significance in the min-plus algebraic setting.
The equation G�z ≤ b is translated as “The minimum element
of the i-th row of the product between G and z needs to be less
than bi.” However, that doesn’t provide meaningful constraints
on the vector z. It affects a single element of the vector, and we

z1

Possible assignments

z2

Figure 2: Possible assignments constrained by the Viterbi
update law (lower and leftmost constraints) and by pruning
operation (upper and rightmost constraints).

can’t know apriori which one. Instead, consider the equation
G � z ≥ b. This translates to “The minimum element of the
i-th row of the product between G and z needs to be greater
than bi.” Since the minimum is greater than a value, it follows
that every element in the product is greater than that value.

2) Pruning equations: Before, we treated pruning as an
estimation problem, since we had no way of enforcing the
Viterbi update law of (5) on y. However, the variable vector
z has been constrained by the relaxation of (7). Thus, we can
see pruning as another set of constraints on the vector z:

z ≤ ηηη, ηηη = η +
1

2

(
bT � b

)
+ 0 (9)

where b was defined in (7). Following the same trick we did
in (8), let H = In. Then (9) can be written in the form:

H� z ≤ ηηη (10)

The combination of (8) and (10) defines a polytope. Indeed:

T (Gb,Hη) = {z ∈ Rnmin : Gb � z ≥ 0,Hη � z ≤ 0} (11)

where Gb is identical to G, except that every row i has been
decreased by bi, and Hη is identical to H, except that every
row i has been decreased by ηi.

The space enclosed inside the polytope contains all the
assignments of z that satisfy the constraints. An example of
the constrained space is visualized in Fig. 2.

IV. GEOMETRY OF THE VITERBI

In this section we examine how these geometric properties
can be interpreted, and how the polytope and its structure can
give us information about the efficiency of the pruning.

We propose that the “volume” (referring to d-dimensional
volume, for example a segment in 1-D, area in 2-D, con-
ventional volume in 3-D, etc.) enclosed in the interior of the
polytope can provide a measure of the efficiency of the pruning
procedure. However, the volume scales with the amount of
participating nodes. Thus, it would be wise to incorporate into
the metrics the support of the pruned vector z.

Definition 4. The support of a vector x, denoted by supp(x)
is the set of the indices corresponding to finite entries in x.



Let ri = (min(z) + η)− zi. Then ri ∈ [0, η], and indicates
to what capacity each index satisfies the constraints of (8) and
(10). Then:
• Let ν be the negative logarithm of the normalized volume,

divided by the support of the pruned vector:

ν = − 1

supp(z)
log

 ∏
i∈supp(z)

ri
max r


= − 1

supp(z)

∑
i∈supp(z)

log ri
log (max r)

• Let ε be:

ε = − 1

supp(z)

∑
i∈supp(z)

−zi(t) · e−zi(t)

In essence, this metric is the entropy of the probability
vector q(t). Remember that x = − logq, so:

−
∑

i∈supp(z)

−zi(t) · e−zi(t) = −
∑

i∈supp(z)

qi(t) · log qi(t)

These metrics provide insights about the efficiency of pruning
and can help designers choose values for η. Both ν and ε can
be used to quantify the tradeoff between computational com-
plexity and the probability of finding the best path. Minimizing
the derivative of ε, while on the same time maximizing ν can
aid in choosing the leniency values.

Of interest is how the support of x is related to the support
of z. In particular:
• depending on the size of supp(z) w.r.t. supp(x), we

can dynamically adjust the leniency variable η between
frames.

• we can examine the set V of states for which it is true
that:

V = {i : i ∈ supp(x), i 6∈ supp(z)}

It is possible to find similarities in those states (and their
acceptable paths), and thus simplify the WFSTs.

A final thing to consider is how the vertices of the polytope
are connected with the N -best paths that pruning algorithms
usually produce. In fact, certain n − 1-faces of the polytope
appear in the N -best paths. These n − 1-faces are produced
by the lower constraint for each dimension, and thus act on
the space produced by the other dimensions. The vertex where
these hyperplanes intersect is the vector that is returned by the
algorithm, containing all the best paths.

V. NUMERICAL EXAMPLE AND EXPERIMENTATION

Let us present a numerical example. Consider again the
WFST of Fig. 1. The transition matrix implied by the edges’
weights is:

A =



∞ 0.602 0.523 0.824 0.523 ∞
∞ ∞ ∞ 0.046 1 ∞
∞ ∞ ∞ 1 0.046 ∞
∞ ∞ ∞ ∞ ∞ 0

∞ ∞ ∞ ∞ ∞ 0

∞ ∞ ∞ ∞ ∞ ∞



We assume that each state has a higher probability for its entry
symbol (the one indicated in Fig. 1) than for the rest of the
symbols. Let the probability for the entry symbol be 0.30,
and 0.175 for the rest. Thus, state 1 has a high probability
to observe a, state 2 a high probability to observe b, and so
on. By taking the negative logarithm of these probabilities we
construct the matrix P(σt) for each time frame. Suppose we
observe the symbols a, b, and c, in the first three time frames.
The observation matrix for the first time frame is:

P(a) =



∞ ∞ ∞ ∞ ∞ ∞
∞ 0.523 ∞ ∞ ∞ ∞
∞ ∞ 0.757 ∞ ∞ ∞
∞ ∞ ∞ 0.757 ∞ ∞
∞ ∞ ∞ ∞ 0.757 ∞
∞ ∞ ∞ ∞ ∞ 0.757


Finally, since state 0 can be the only starting state, let:

x(0) =
[
0 ∞ ∞ ∞ ∞ ∞

]T
Using (5), the three vectors outputed by the algorithm are:

x(1) =
[
∞ 1.125 1.28 1.581 1.28 ∞

]T
x(2) =

[
∞ ∞ ∞ 1.694 2.083 2.037

]T
x(3) =

[
∞ ∞ ∞ ∞ ∞ 2.217

]T
Let the leniency be η = 0.347 (the negative logarithm of 0.45).
Using (9), the threshold vectors comprise of the elements
1.472 and 2.041 respectively. The polytopes defined by the
combination of the constraints of the Viterbi update law and
the constraints of the the pruning variant for the vectors x(1)
and x(2) can be seen in Fig. 3.

Let’s see a more substantial experiment. We used data from
an NLP transliteration task; in particular, we used a WFST that
tranduces Greek text written using Latin characters to the most
likely Greek “translation”. The experiments were performed
on a laptop with a 2.5GHz Intel i7 processor. Table 1 notes
the execution time, the average values of ν and ε, and the
minimum and maximum number of surviving nodes across
time frames for different leniency values. The derivative of ε
for both the presented examples is minimized for values of
η around 10 (while also maximizing ν). For such leniency
values, at most 30% of the total states survive pruning at each
time frame.

VI. CONCLUSION

In this work we analysed the Viterbi algorithm using min-
plus algebra and geometry. First, we formulated the algorithm
in the context of tropical algebra. Then, we modeled pruning
as a problem of optimally solving min-plus inequalities in
tropical algebra. Using the constraints from the update law
and the pruning variant, we defined a tropical polytope.
We presented its n − 1-faces as hyperplanes of the N -best
paths. Finally, we provided a numerical and visual example
to highlight the geometrical structure. Our ongoing research
seeks the application of these ideas in NLP and machine
learning.
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Figure 3: Resulting polytopes of the numerical example. The
highlighted edges are the n−1-faces of the N -best paths, and
the black dot indicates the vector outputed by the algorithm.
Top (3D, x2(1), x3(1), x5(1)). Bottom (2D, x4(2), x6(2)).

Transliteration from latin to greek characters
input η time (s) ε ν min max

\ELLIPEIS\ 0 89.5 0.0248 0 1 1
(Latin text 5 121.7 0.0018 1.558 1 1444

for the 10 201.9 0.0013 2.094 101 3829
Greek word 15 533.0 0.0001 1.630 5145 10333
ΕΛΛΙΠΕΙΣ) ∞ 580.3 0.0001 0 10333 10333

\ALLA\ 0 77.6 0.0616 0 1 1
(Latin text 5 93.3 0.0039 1.435 1 1215

for the 10 175.2 0.0026 2.072 153 5431
Greek word 15 481.8 0.0003 1.765 7088 14246
ΑΛΛΑ) ∞ 562.9 0.0002 0 14246 14246

Table 1: Execution time, ν and ε values, and minmum and
maximum number of surviving states across time frames for
different leniency values η for two different input words.
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